

www.locosystech.com

Product name	Description	Version
LS20030	GPS smart antenna module/USB,9600BPS,30x30mm	
LS20031	GPS smart antenna module/TTL,9600BPS,30x30mm	1.4
LS20032	GPS smart antenna module/RS232,9600BPS,30x30mm	

Datasheet of GPS smart antenna module, LS20030~2

Top View

LS20030

LS20031

LS20032

1 Introduction

LS20030~2 series products are complete GPS smart antenna receivers, including an embedded antenna and GPS receiver circuits, designed for a broad spectrum of OEM system applications. The product is based on the proven technology found in LOCOSYS 66 channel GPS SMD type receivers MC-1513 that use MediaTek chip solution. The GPS smart antenna will acquire up to 66 satellites at a time while providing fast time-to-first-fix, one-second navigation update and low power consumption. It can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. Its far-reaching capability meets the sensitivity requirements of car navigation as well as other location-based applications.

This module supports hybrid ephemeris prediction to achieve faster cold start. One is self-generated ephemeris prediction that is no need of both network assistance and host CPU's intervention. This is valid for up to 3 days and updates automatically from time to time when GPS module is powered on and satellites are available. The other is server-generated ephemeris prediction that gets from an internet server. This is valid for up to 14 days. Both ephemeris predictions are stored in the on-board flash memory and perform a cold start time less than 15 seconds.

2 Features

- MediaTek high sensitivity solution
- Support 66-channel GPS
- Low power consumption
- Fast TTFF at low signal level
- Built-in 12 multi-tone active interference canceller
- Free hybrid ephemeris prediction to achieve faster cold start
- Built-in data logger
- Up to 10 Hz update rate

LOCOSYS

LOCOSYS Technology Inc.

- Capable of SBAS (WAAS, EGNOS, MSAS, GAGAN)
- Support Japan QZSS
- Indoor and outdoor multi-path detection and compensation
- Build-in micro battery to reserve system data for rapid satellite acquisition
- LED indicator for GPS fix or not fix

3 Application

- Personal positioning and navigation
- Automotive navigation
- Marine navigation

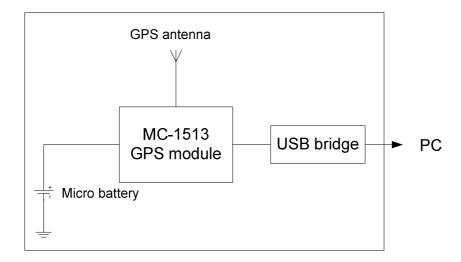


Fig 3-1 System block diagram of LS20030

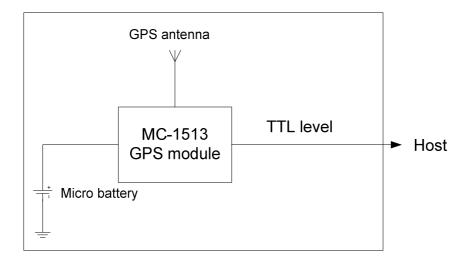


Fig 3-2 System block diagram of LS20031

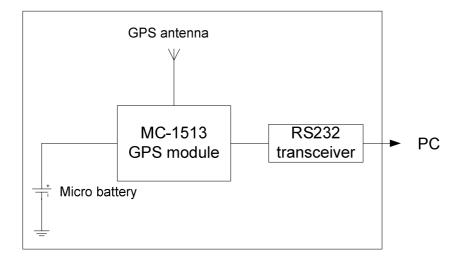


Fig 3-3 System block diagram of LS20032

4 GPS receiver

Chip	MediaTek MT3339		
Frequency	L1 1575.42MHz, C/A code		
Channels	Support 66 channels (22 Tracking,	66 Acquisition)	
Update rate	1Hz default, up to 10Hz		
	Hot start (Open Sky)	< 1s (typical)	
Acquisition Time	Cold Start (Open Sky)	32s (typical) without AGPS	
		<15s (typical) with AGPS (hybrid ephemeris prediction)	
Desition Assumes	Autonomous	3m (2D RMS)	
Position Accuracy	SBAS	2.5m (depends on accuracy of correction data)	
Datum	WGS-84 (default)		
Max. Altitude	< 50,000 m		
Max. Velocity	< 515 m/s		
Protocol Support	NR 654 0102 2 01	9600 bps ⁽¹⁾ , 8 data bits, no parity, 1 stop bits (default)	
	NMEA 0183 ver 3.01	1Hz: GGA, GLL, GSA, GSV, RMC, VTG	

Note 1: Both baud rate and output message rate are configurable to be factory default.

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan

886-2-8698-3698

886-2-8698-3699

• www.locosystech.com

5 Software interface

5.1 NMEA output message

Table 5.1-1 NMEA output message

NMEA record	Description	
GGA	Global positioning system fixed data	
GLL	Geographic position - latitude/longitude	
GSA	GNSS DOP and active satellites	
GSV	GNSS satellites in view	
RMC	Recommended minimum specific GNSS data	
VTG	Course over ground and ground speed	

• GGA--- Global Positioning System Fixed Data

Table 5.1-2 contains the values for the following example:

\$GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64

Table 5.1 - 2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	053740.000		hhmmss.sss
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Position Fix Indicator	1		See Table 5.1-3
Satellites Used	08		Range 0 to 12
HDOP	1.1		Horizontal Dilution of Precision
MSL Altitude	63.8	meters	
Units	M	meters	
Geoid Separation	15.2	meters	
Units	M	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*64		
<cr> <lf></lf></cr>			End of message termination

Table 5.1-3 Position Fix Indicators

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid

2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

• GLL--- Geographic Position – Latitude/Longitude

Table 5.1-4 contains the values for the following example:

\$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52

Table 5.1-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W indicator	Е		E=east or W=west
UTC Time	053740.000		hhmmss.sss
Status	A		A=data valid or V=data not valid
Mada	Δ.		A=autonomous, D=DGPS, E=DR, N=Data not valid,
Wode	Mode A		R=Coarse Position, S=Simulator
Checksum	*52		
<cr> <lf></lf></cr>			End of message termination

• GSA---GNSS DOP and Active Satellites

Table 5.1-5 contains the values for the following example:

\$GPGSA,A,3,24,07,17,11,28,08,20,04,,,,2.0,1.1,1.7*35

Table 5.1-5 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	A		See Table 5.1-6
Mode 2	3		See Table 5.1-7
ID of satellite used	24		Sv on Channel 1
ID of satellite used	07		Sv on Channel 2
ID of satellite used			Sv on Channel 12
PDOP	2.0		Position Dilution of Precision
HDOP	1.1		Horizontal Dilution of Precision
VDOP	1.7		Vertical Dilution of Precision
Checksum	*35		

www.locosystech.com

<cr> <lf></lf></cr>		End of message termination
---------------------	--	----------------------------

Table 5.1-6 Mode 1

Value	Description	
M	Manual- forced to operate in 2D or 3D mode	
A	Automatic-allowed to automatically switch 2D/3D	

Table 5.1-7 Mode 2

Value	Description
1	Fix not available
2	2D
3	3D

• GSV---GNSS Satellites in View

Table 5.1-8 contains the values for the following example:

\$GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73

\$GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75

\$GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B

Table 5.1-8 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Total number of messages ⁽¹⁾	3		Range 1 to 4
Message number ⁽¹⁾	1		Range 1 to 4
Satellites in view	12		
Satellite ID	28		Channel 1 (Range 01 to 196)
Elevation	81	degrees	Channel 1 (Range 00 to 90)
Azimuth	285	degrees	Channel 1 (Range 000 to 359)
SNR (C/No)	42	dB-Hz	Channel 1 (Range 00 to 99, null when not tracking)
Satellite ID	20		Channel 4 (Range 01 to 32)
Elevation	51	degrees	Channel 4 (Range 00 to 90)
Azimuth	077	degrees	Channel 4 (Range 000 to 359)
SNR (C/No)	46	dB-Hz	Channel 4 (Range 00 to 99, null when not tracking)
Checksum	*73		
<cr> <lf></lf></cr>			End of message termination

Note 1: Depending on the number of satellites tracked multiple messages of GSV data may be required.

• RMC---Recommended Minimum Specific GNSS Data

Table 5.1-9 contains the values for the following example:

\$GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53

Table 5.1-9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	053740.000		hhmmss.sss
Status	A		A=data valid or V=data not valid
Latitude	2503.6319		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Speed over ground	2.69	knots	True
Course over ground	79.65	degrees	
Date	100106		ddmmyy
Magnetic variation		degrees	
Variation sense			E=east or W=west (Not shown)
M. I.			A=autonomous, D=DGPS, E=DR, N=Data not valid,
Mode	A		R=Coarse Position, S=Simulator
Checksum	*53		
<cr> <lf></lf></cr>			End of message termination

• VTG---Course Over Ground and Ground Speed

Table 5.1-10 contains the values for the following example:

\$GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38

Table 5.1-10 VTG Data Format

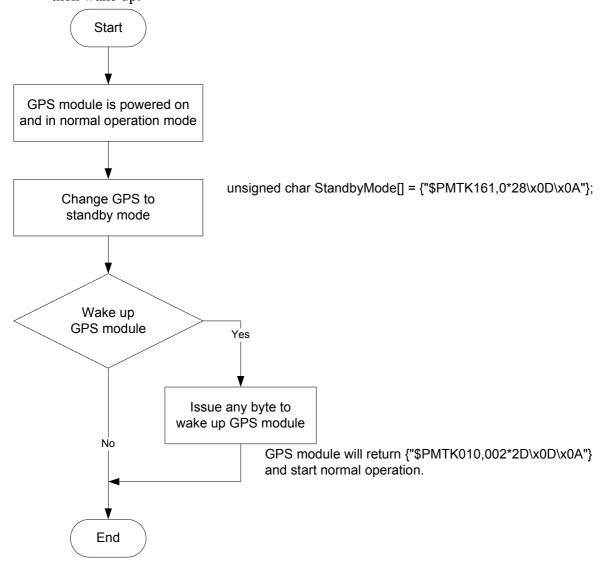
Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course over ground	79.65	degrees	Measured heading
Reference	Т		True
Course over ground		degrees	Measured heading
Reference	M		Magnetic
Speed over ground	2.69	knots	Measured speed
Units	N		Knots
Speed over ground	5.0	km/hr	Measured speed
Units	K		Kilometer per hour
Mode	A		A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position, S=Simulator
Checksum	*38		
<cr> <lf></lf></cr>			End of message termination

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan

886-2-8698-3698

886-2-8698-3699

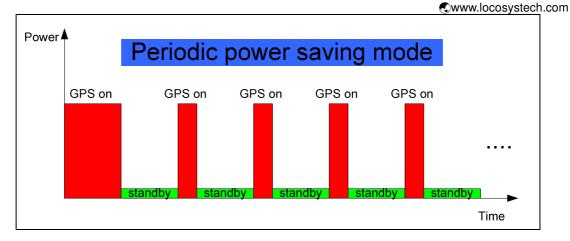
www.locosystech.com

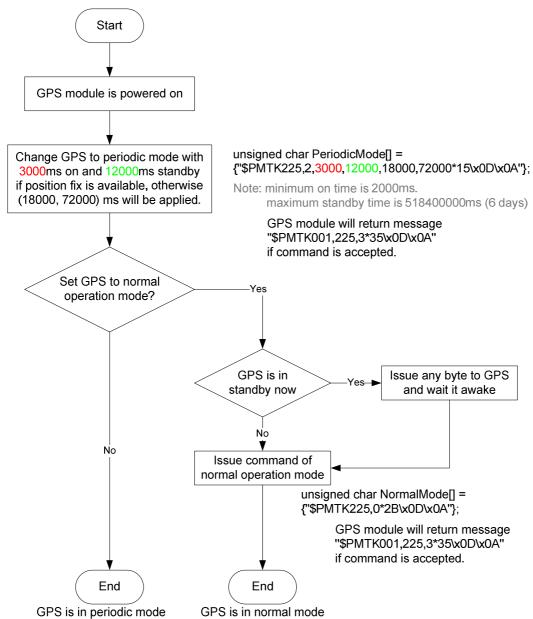

5.2 Proprietary NMEA input message Please refer to MTK proprietary message.

5.3 Examples to configure the power mode of GPS module

The GPS module supports different power modes that user can configure by issuing software commands.

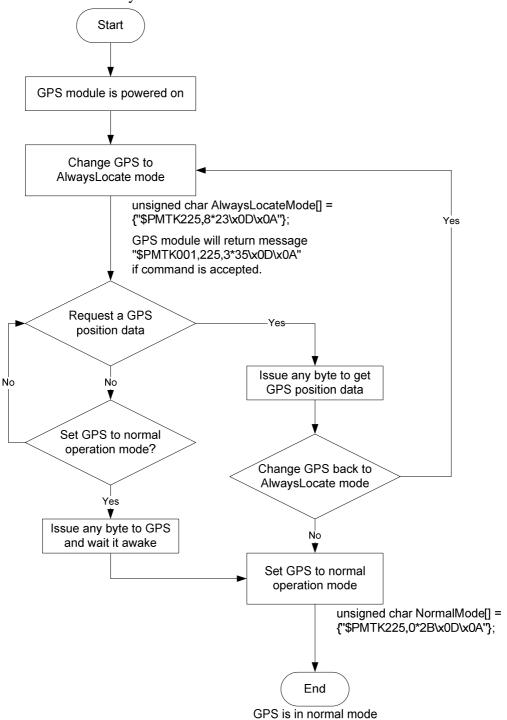
5.3.1 Standby mode


User can issue software command to make GPS module go into standby mode that consumes less than 200uA current. GPS module will be awaked when receiving any byte. The following flow chart is an example to make GPS module go into standby mode and then wake up.


5.3.2 Periodic mode

When GPS module is commanded to periodic mode, it will be in operation and standby periodically. Its status of power consumption is as below chart.

The following flow chart is an example to make GPS module go into periodic mode and then back to normal operation mode.



5.3.3 AlwaysLocateTM mode

AlwaysLocateTM is an intelligent controller of periodic mode. Depending on the environment and motion conditions, GPS module can adaptively adjust working/standby time to achieve balance of positioning accuracy and power consumption. In this mode, the host CPU does not need to control GPS module until the host CPU needs the GPS position data. The following flow chart is an example to make GPS module go into AlwaysLocateTm mode and then back to normal operation mode.

Note: AlwaysLocateTM is a trade mark of MTK.

5.4 Data logger

The GPS module has internal flash memory for logging GPS data. The configurations include time interval, distance, speed, logging mode, and ... etc. For more information, please contact us.

5.5 Examples to configure the update rate of GPS module

The GPS module supports up to 10Hz update rate that user can configure by issuing software commands. Note that the configurations by software commands are stored in the battery-backed SRAM that is powered through VBACKUP pin. Once it drains out, the default/factory settings will be applied.

Due to the transmitting capacity per second of the current baud rate, GPS module has to be changed to higher baud rate for high update rate of position fix. The user can use the following software commands to change baud rate.

Baud rate	Software command
Factory default	\$PMTK251,0*28 <cr><lf></lf></cr>
4800	\$PMTK251,4800*14 <cr><lf></lf></cr>
9600	\$PMTK251,9600*17 <cr><lf></lf></cr>
19200	\$PMTK251,19200*22 <cr><lf></lf></cr>
38400	\$PMTK251,38400*27 <cr><lf></lf></cr>
57600	\$PMTK251,57600*2C <cr><lf></lf></cr>
115200	\$PMTK251,115200*1F <cr><lf></lf></cr>

Note: <CR> means Carriage Return, i.e. 0x0D in hexadecimal. <LF> means Line Feed, i.e. 0x0A in hexadecimal.

If the user does not want to change baud rate, you can reduce the output NMEA sentences by the following software commands.

NMEA sentence	Software command
Factory default	\$PMTK314,-1*04 <cr><lf></lf></cr>
Only GLL at 1Hz	\$PMTK314,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Only RMC at 1Hz	\$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29 <cr><lf></lf></cr>
Only VTG at 1Hz	\$PMTK314,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Only GGA at 1Hz	\$PMTK314,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Only GSA at 1Hz	\$PMTK314,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Only GSV at 1Hz	\$PMTK314,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0*29 <cr><lf></lf></cr>
Only ZDA at 1Hz	\$PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0*29 <cr><lf></lf></cr>
RMC, GGA, GSA	\$PMTV214 0 1 0 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
at 1Hz and GSV at	\$PMTK314,0,1,0,1,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0*2C <cr><lf></lf></cr>

						€	www.loco	systech.com
0.2Hz								
If the command i	s correct	and	executed,	GPS	module	will	output	message
\$PMTK001,314,3*36 <cr><lf></lf></cr>								

After the GPS module is changed to higher baud rate or reduced NMEA sentence, the user can configure it to high update rate of position fix by the following commands.

Interval of position fix	Software command					
Every 100ms (10Hz) ⁽¹⁾	\$PMTK220,100*2F <cr><lf></lf></cr>					
Every 200ms (5Hz)	\$PMTK220,200*2C <cr><lf></lf></cr>					
Every 500ms (2Hz)	\$PMTK220,500*2B <cr><lf></lf></cr>					
Every 1000ms (1Hz)	\$PMTK220,1000*1F <cr><lf></lf></cr>					
Every 2000ms (0.5Hz) ⁽²⁾	\$PMTK220,2000*1C <cr><lf></lf></cr>					
If the command is correct and executed, GPS module will						
output message \$PMTK00	01,220,3*30 <cr><lf></lf></cr>					

Note 1: The minimum interval of position fix is 100ms, i.e. the maximum update rate is 10Hz.

Note 2: The current consumption is the same with the update rate of 1Hz.

6 LED indicator

The red LED is an indicator of GPS positioning status. In continuous power mode, it flashes once per second when position is fixed. Otherwise it is off. The timing in detail is as below.

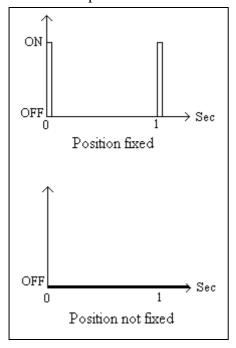


Fig 6.1 LED indicator of GPS positioning status

7 Pin assignment and descriptions

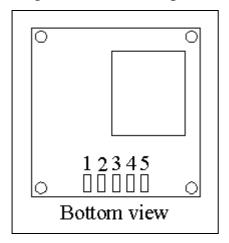


Fig 7.1 Pin assignment of LS20030, LS20031 and LS20032

• LS20030

Pin#	Name	Type	Description
1	VBUS	P	USB power input
2	D-		D- line
3	D+		D+ line
4	GND	P	Ground
5	Shield	P	Ground

LS20031

Pin#	Name	Type	Description
1	VCC	P	Power input
2	RX	I	Data input (TTL level)
3	TX	О	Data output (TTL level)
4	GND	P	Ground
5	GND	P	Ground

• LS20032

Pin#	Name	Type	Description
1	VCC	P	Power input
2	RX	I	Data input (RS232 level)
3	TX	О	Data output (RS232 level)
4	GND	P	Ground
5	GND	P	Ground

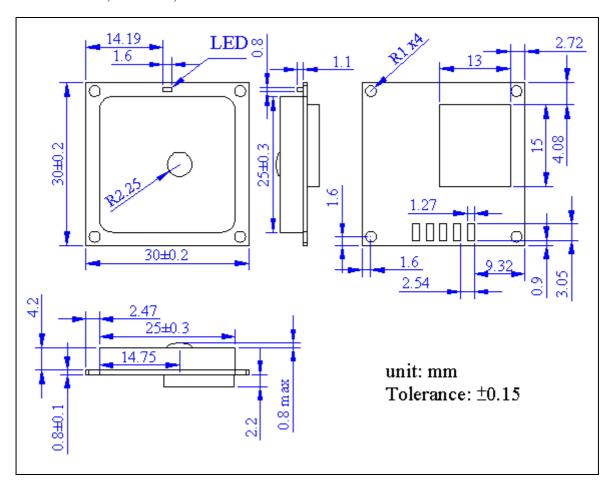
8 DC & Temperature characteristics

8.1 DC Electrical characteristics

Parameter	Symbol	Product	Min.	Typ.	Max.	Units
		LS20030	4.75	5	5.25	
Input voltage	VCC	LS20031	3	3.3	4.3	V
		LS20032	4	5	6	
		LS20030		22 ⁽¹⁾		
Input current	Icc	LS20031		13 ⁽¹⁾		mA
		LS20032		19 ⁽¹⁾		
High Level Input Voltage	VIH	LS20031	2.0		3.6	V
Low Level Input Voltage	V_{IL}	LS20031	-0.3		0.8	V
High Level Input Current	Іін	LS20031	-1		1	uA
Low Level Input Current	IIL	LS20031	-1		1	uA
High Level Output Voltage	Voh	LS20031	2.4		3.3	V
Low Level Output Voltage	Vol	LS20031			0.4	V
High Level Output Current	Іон	LS20031		2		mA
Low Level Output Current	Iol	LS20031		2		mA

Note 1: Measured when position fix (1Hz) is available and the function of self-generated ephemeris prediction is inactive.

8.2 Temperature characteristics


Parameter	Symbol	Product	Min.	Тур.	Max.	Units
Operating Temperature	Topr	LS20030~LS20032	-40	-	85	$^{\circ}\mathbb{C}$
Storage Temperature	Tstg	LS20030~LS20032	-40	25	85	$^{\circ}\mathbb{C}$

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698 886-2-8698-3699 • www.locosystech.com

9 Mechanical specification

• LS20030, LS20031, LS20032

LOCOSYS

LOCOSYS Technology Inc.

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698 886-2-8698-3699 www.locosystech.com

Document change list

Revision 1.0

• First release on Oct. 25, 2007.

Revision 1.0 to Revision 1.1 (July 20, 2009)

- Changed GPS chip from MT3318 to MT3329 on page 3. The units with date code after 0924 (on MC-1513) will be changed to new chip.
- Changed the picture of LS20033 on page 1.
- Added "Support AGPS" on page 1.
- Changed Fig 3-1 on page 2.
- Changed channels from 32 to 66 on page 3
- Changed update rate from "up to 5Hz" to "up to 10Hz" on page 3.
- Changed hot start time from "2s (typical)" to "<2s (typical)" on page 3.
- Changed cold start time from 36s to 35s on page 3.
- Added "Note 1" on page 4.
- Changed Input Battery Backup Voltage from "1.1V~6.0V" to "2.0V~4.3V" on page 10.
- Changed typical current of LS20030 from 47mA to 29mA on page 10.
- Changed typical current of LS20031 from 41mA to 29mA on page 10.
- Changed typical current of LS20032 from 46mA to 34mA on page 10.
- Changed typical current of LS20033 from 44mA to 32mA on page 10.
- Changed operation temperature of LS20033 from "-20 ~ 65°C" to "-30 ~ 85°C" on page 11.
- Changed storage temperature of LS20033 from "-30 ~ 75° C" to "-40 ~ 85° C" on page 11.

Revision 1.1 to Revision 1.2 (July 28, 2009)

• Changed the picture of LS20030 on page 1.

Revision 1.2 to Revision 1.3 (January 30, 2012)

- Changed GPS chip from MT3329 to MT3339 on page 4. The units with a capital T after the date code on the metal shield have been changed to new chip.
- Changed the picture of LS20030 on page 1.
- Added the description of hybrid ephemeris prediction in the section 1.
- Added several new features in the section 2.
- Changed Fig 3-1 on page 2.
- Changed hot start time from < 2s to < 1s on page 4.
- Changed cold start time from 35s to 32s on page 4.
- Changed Max. Altitude from 18,000m to 50,000m on page 4.
- Changed the range of satellite ID in GSV message from 32 to 196 on page 7.
- Added "N = data not valid, R=Coarse Position, S=Simulator" in GLL, RMC and VTG message.
- Added section 5.3, 5.4 and 5.5.
- Changed maximum input voltage of LS20031 and LS20033 from 4.2V to 4.3V in the section

8.1.

- Changed typical current of LS20030 from 29mA to 22mA in the section 8.1.
- Changed typical current of LS20031 from 29mA to 13mA in the section 8.1.
- Changed typical current of LS20032 from 34mA to 19mA in the section 8.1.
- Changed typical current of LS20033 from 32mA to 16mA in the section 8.1.
- Changed the minimum operation temperature from -30° C to -40° C in the section 8.2
- Added some dimensions in the section 9.

Revision 1.3 to Revision 1.4 (July 21, 2015)

- Revised product name from LS20030~3 to LS20030~2
- Remove model LS20033 from product